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12.1  General Introduction

I can safely say that nobody understands quantum mechanics. R. Feynman (1985, p. 129)

The purpose of this paper is to argue that history and philosophy of chemistry and 
physics are central strategies in the teaching of atomic and molecular structure, from 
the Dalton model (for an earlier approach see Chalmers 1998) to modern quantum 
mechanics and quantum chemistry. Therefore, in addition to the presentation and 
conclusions, the chapter is divided into two equally important sections. The first 
describes the modern development of atomic and molecular structure, emphasising 
some of the philosophical problems that have confronted and been addressed by 
scientists, and those that have to be faced in understanding the science. The second 
discusses the alternative conceptions and difficulties that students of different educa-
tional levels bring to this subject and also the different approaches to the teaching of its 
history and/or philosophy. The conclusion is that a balance between the theoretical 
physicochemical basis of this chemistry knowledge and the phenomenological- 
empiricist knowledge must be achieved. But this cannot be done properly if teachers 
do not know and/or assume a particular historical-philosophical position.

Science education practice has not been driven to any great extent by research 
findings or by a goal of accomplishing professional ideals. The changes that have 
occurred in the majority of textbooks during the past decades do not show any real 
recognition of the growth in scientific knowledge (Schummer 1999). This is partly 
because of a chemistry teaching revolution 50 years ago (in the context of a revolu-
tion in the whole of science education: one which resulted from the Soviet success 
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in launching Sputnik 1 in 1957). Under a philosophical (but hidden) umbrella, the 
change placed an emphasis on the physicochemical basis of General Chemistry in
the three main projects of that decade: Chemical Bond Approach (Strong 1962), 
Chem Study (Campbell 1962) and Nuffield Foundation (1967).

The proposal was that the hegemony of physical chemistry would provide a basis 
of understanding for students’ introduction to the chemical sciences through the 
quantum chemistry basis of the chemical bond, the kinetic model of the particulate 
nature of matter and the dominance of thermodynamics for explanations in several 
areas of chemistry. A new laboratory learning that promoted the notion of explor-
atory play with apparatus accompanied it. The General Chemistry course turned
towards a theoretical character, losing the phenomenological approach that it had had 
in the preceding years. Without a deep recognition of its historical and philosophical 
roots, many people were led by this approach to believe that the contents of science 
textbooks were, in fact, science. But this is not necessarily true. The written materials 
employed in science education are descriptions of past science explorations (Yager 
2004). Besides all this, once the majority of science teachers all over the world use 
textbooks as the main (sometimes the only) source of information—and the contents 
of the books have to expand in an idealised attempt to cope with the increase in infor-
mation, with direct references to the history of sciences disappearing—they become, 
paradoxically and without wanting to …, history teachers! However, even if it was 
unconscious, it was a bad or a wrong way to teach the history of science. For exam-
ple, Rodriguez and Niaz (2004) examined numerous textbooks for the History and 
Philosophy of Science (HPS) content in their approach to teaching atomic structure, 
and they found that an adequate and accurate reflection of the historical development 
is rarely presented.1 This is educationally significant because philosophers of science 
and science education researchers have argued that quantum mechanics is particu-
larly difficult to understand, due to the intrinsic obscurity of the topic and the contro-
versial nature of its different interpretations [e.g. Copenhagen School “indeterminacy” 
(Bohr, Pauli, Heisenberg, Born, von Neumann and Dirac among others), Schrodinger 
with his cat paradox, the stochastic and the many world’s interpretations and Bohm’s 
“hidden variables” (Garritz 2013)].

12.2  The Subject Matter

12.2.1  Introduction

In this section a brief summary of several of the most important scientific advances of 
atomic and molecular structure, related mainly with chemistry but with a physico-
chemical character, will be presented. The starting point is Dalton’s model of the atom 
and the whole nineteenth-century atomic controversy. At the end of that century, 
the ‘discovery’ by J. J. Thomson of negative corpuscles initiated the appearance of 

1 See also Moreno-Ramírez et al. ( 2010).
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 models of structure within the atom, such as that of J. J. Thomson with Lord Kelvin. 
The nuclear model of Rutherford was followed by Bohr’s model of stationary orbits, 
which applied the energy quantisation hypothesis of M. Planck, which, in turn, started 
the old quantum theory in 1900. Then, A. Einstein as an explanation for the photoelec-
tric effect recognised the wave-corpuscular duality of light. All this old quantum 
 theory was replaced by E. Schrödinger and W. Heisenberg’s wave and matrix mechan-
ics, respectively, following on from the pilot wave hypothesis of L. de Broglie, and 
after that chemical bonding was interpreted in the same terms of quantum mechanics.

On this issue it is important to note that in 2008 the American Chemical Society 
held a symposium entitled ‘200 Years of Atoms in Chemistry: From Dalton’s Atoms 
to Nanotechnology’ which was followed, a couple of years later, with the publica-
tion of a book with a similar name. For a quick view of the topic that is addressed 
here, some of its chapters with comments from the editor are shown in Table 12.1.

12.2.2  Dalton’s Model. Nineteenth-Century Controversies 
Between Physicists and Chemists

Dalton’s atomic model with associated relative atomic weights was constructed in 
1805 to explain results on the absorption of gases into water (Chamizo 1992; Viana 
and Porto 2010). Since then, in the nineteenth and early twentieth centuries, several 
famous debates took place between atomists and anti-atomists (including some 

Table 12.1 Some chapters of the book by C. J. Giunta (2010)

Author Chapter name Comments

W. B. Jensen Four Centuries of 
Atomic Theory.  
An Overview

A description of the dominant flavour of atomic notions 
over the last four centuries from the mechanical 
through the dynamical, gravimetric and kinetic to the 
electrical

L. May Atomism Before  
Dalton

Outlines a variety of atomistic ideas from around the 
world. It concentrates on conceptions of matter that 
are more philosophical or religious than scientific

D. E. Lewis 150 Years of  
Organic Structures

Fifty years after Dalton, F. A. Kekulé and A. S. Couper 
independently published representations of organic 
compounds that rationalise their chemistry and even 
facilitated the prediction of new compounds

W. H. Brock The Atomic  
Debates Revisited

A description of episodes from the second half of the 
nineteenth century in which chemists debated the 
truth of atomic theory. Doubts about the physical 
reality of atoms led chemists to question the 
soundness of chemical atomism

C. J. Giunta Atoms Are Divisible. 
The Pieces Have 
Pieces

Evidence for the divisibility continued and impermanence 
of atoms was collected even while some chemists and 
physicists continued to doubt their very existence

G. Patterson Eyes to See: Physical 
Evidence for Atoms

By the early decades of the twentieth century, through the 
efforts of J. Perrin and others, scepticism over the 
physical existence of atoms was practically eliminated
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Nobel Prize winners). The early contributions of scientists from several European 
countries as Berzelius, Gay-Lussac and Avogadro to the acceptance of this model
were not enough to convince all chemists or physicists (Giunta 2010; Nash 1957). 
For example, Bensaude-Vincent indicates:

It is well-known that French chemists were reluctant to adopt the atomic theory in the nine-
teenth century. Their opposition was long-standing and tenacious since the atomic hypothe-
sis formulated in the first decade of the nineteenth century by John Dalton was banished 
from the teaching of chemistry until the early decades of the twentieth century. Instead of 
atomism, the French chemists preferred the Richter’s language of equivalents because it 
avoided commitment to a speculative theory of indivisible elementary particles …[…]…
There is a general agreement among historians of chemistry that this national feature was 
due to the overarching influence of positivism in France. (Bensaude-Vincent 1999, p. 81)

Following the Karlsruhe’s Congress in 1861 (Kauffman 2010), most of the 
chemical community accepted the distinction between atoms and molecules with 
their respective atomic and molecular weights, as admirably shown by S. Cannizzaro. 
In general, atoms were regarded by physicists as inelastic or inertial points or par-
ticles. Meanwhile chemists accepted Dalton’s model:

A group of physicists, among them Ernst Mach, John Bernhard Stallo and Pierre Duhem 
began to voice doubts about physical atomism because the kinetic theory did not dovetail 
with accurate experimentation. …The consilience between chemistry and physics had bro-
ken down. Mach, in particular, believed science to be a construct of the human mind and 
that it was not possible to find independent evidence for the existence of matter. Influenced 
by the thoughts of Georg Helm in 1887, Ostwald began to deny atomism explicitly. He
opted instead for energetics –the laws of thermodynamics– rather than mechanical explana-
tions in chemistry. He argued that energy was more fundamental than matter, which he saw 
only as another manifestation of energy. It followed that chemical events were best ana-
lyzed as a series of energy transactions. The difference between one substance and another, 
including one element and another, was due to their specific energies. (Jensen 2010, p. 63)

A century had to pass before the atomic model was fully accepted, which can be 
marked by formal recognition of J. B. Perrin’s researches at the Solvay Conference 
of 1911 (Giunta 2010; Izquierdo 2010; and Izquierdo and Adúriz 2009).

12.2.3  The Electron and Thomson’s Atom Model

There was a controversy about the nature of cathode rays (German physicists 
supported the ether theory for their origin, while the British argued for their particle 
nature), but it was the discovery of X-rays in 1895 that triggered J. J. Thomson’s 
interest in cathode rays. He conducted a series of experiments at the beginning of 
1897, which were first presented at a Friday evening discourse of the Royal 
Institution on April 29, 1897, and were finally published at length in the Philosophical 
Magazine in October the same year.

Thomson points out a fundamental aspect of his experiments, namely, that cath-
ode rays are the same whatever the gas through which the discharge passes, and 
concludes: ‘[cathode rays] are charges of negative electricity carried by particles of 
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matter. The question that arises next is: what are these particles? Are they atoms, or 
molecules, or matter in a still finer state of subdivision?’ (p. 302). That is why he 
determined the relation m/e. From which Thomson concluded that its value, 
10−12 kg/C, is independent of the nature of the gas, and it is very small compared 
with the 10−8 kg/C of H+, the hydrogen ion in electrolysis, which is the smallest 
value of this quantity previously known.

Thomson goes further and proposes an atomic model:

Since corpuscles similar in all respects may be obtained from different agents and materi-
als, and since the mass of the corpuscles is less than that of any known atom, we see that the 
corpuscle must be a constituent of the atom of many different substances (p. 90)… […]… 
The corpuscle, however, carries a definite charge of negative electricity, and since with any 
charge of negative electricity we always associate an equal charge of the opposite kind, we 
should expect the negative charge of the corpuscle to be associated with an equal positive 
charge of the other…we shall suppose that the volume over which the positive electricity is 
spread is very much larger than the volume of the corpuscle. (Thomson 1904, p. 93)

This model would last until Geiger and Marsden’s experiment of bombarding
metal thin films with radioactive particles, which allowed E. Rutherford to postulate 
the existence of the nucleus. On this subject we should mention the book Histories 
of the Electron that arose from two meetings (one in London and the other in 
Cambridge, Massachusetts) held to celebrate, in 1997, the centenary of the elec-
tron’s discovery. The book is divided into the following four main sections that 
recognise the breadth of the subject being treated, and particularly the relations 
among the various sciences, and with technology and philosophy:

• Corpuscles and Electrons
• What Was the Newborn Electron Good For?
• Electrons Applied and Appropriated
• Philosophical Electrons

Some of its chapters with comments from the editors are shown in Table 12.2.

12.2.4  Planck, Einstein and Bohr: The Old Quantum Theory

The centennial of quantum theory has been celebrated a few years ago (Kleppner 
and Jackiw 2000). Quantum mechanics forced physicists and chemists to reshape 
their ideas of reality, to rethink the nature of things at the deepest level and to 
revise their concepts of determinacy vs. indeterminacy, as well as their notions of 
cause and effect.

The clue that triggered the quantum revolution came not from studies of matter 
but from a problem in radiation. The specific challenge was to understand the spec-
trum of light emitted by black bodies (that absorb and emit all kinds of electromag-
netic radiation). In M. Planck’s seminal paper (1900) on thermal radiation, it was 
hypothesised that the total energy of a vibrating system cannot be changed continu-
ously. Instead, the energy must jump from one value to another in discrete steps, or 
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quanta, of energy. The idea of energy quanta was so radical that Planck let it lie 
fallow. A. Einstein (1906), then unable to obtain an academic position, wrote from 
the Swiss patent office in Berne: ‘Analyzed in classical terms Planck’s black-body 
model could lead only to the Rayleigh-Jeans law’. Kuhn (1978, p. 170) also made a 
contribution to this Planck-Einstein debate by saying that ‘Planck’s radiation law 
could be derived instead, but only by decisively altering the concepts its author had 
employed for that purpose’. Midway through his paper, Einstein wrote:

We must therefore recognize the following position as fundamental to the Planck theory of 
radiation: […]. During absorption and emission the energy of a resonator changes discon-
tinuously by an integral multiple of hν. Moreno-Ramírez et al. (2010)2

Delighted as every physicist must be that Planck in so fortunate a manner disre-
garded the need [for such justification], it would be out of place to forget that 
Planck’s radiation law is incompatible with the theoretical foundations which pro-
vide his point of departure (Einstein 1909, p. 186).

More recently, in 1913, N. Bohr applied the quantisation to the angular momen-
tum of the hydrogen atom and obtained the whole set of J. R. Rydberg’s spectral 
frequencies (Heilbron and Kuhn 1969). Even then the concept was so bizarre that 
there was little basis for progress with this ‘old quantum theory’. Almost 15 more 
years and a fresh generation of physicists were required to create modern quantum 
theory. For an interesting and detailed description of the historical details of all 
quantum discoveries, Baggott (2011) can be consulted.

12.2.5  De Broglie, Heisenberg and Schrödinger.  
Quantum Mechanics

In 1923, L. de Broglie tried to expand Bohr’s ideas and he pushed for their application 
beyond the hydrogen atom. In fact he looked for an equation that could explain the 
wavelength characteristics of all matter. His equation, λ = h/p, in relation to the wave-
length of particles was experimentally confirmed in 1927 when physicists L. Germer
and C. Davisson fired electrons at a crystalline nickel target, and the resulting diffrac-
tion pattern was found to match the predicted value of λ. Also G. P. Thomson—son 
of Joseph John, the discoverer of the electron—corroborated the de Broglie’s wave-
length of electrons going through very thin films of metals. Whereas his father had 
seen the electron as a corpuscle (and won the Nobel Prize in the process), he demon-
strated that it could be diffracted like a wave. That is why it is said that Thomson’s 
family contributed to the wave-particle duality of the electron by occupying the lead 
positions on both sides.

A second pillar of the development of quantum mechanics was W. Heisenberg, 
who reinvented matrix multiplication in June 1925 with his ‘matrix mechanics’ as 

2 In German he says ‘Die Energie eines Resonators ändert sich durch Absorption und Emision
sprungweise, und zwar ein ganzzahliges Vielfache von (R/N)βν’ (Einstein 1906, p. 202).
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was confirmed by M. Born and P. Jordan after revising his work. On May 1926, 
Heisenberg began his appointment as a university lecturer in Göttingen and with an
assistantship to Bohr in Copenhagen. Heisenberg formulated the uncertainty prin-
ciple in February 1927 while employed as a lecturer in Bohr’s Institute for 
Theoretical Physics at the University of Copenhagen. He was awarded the 1932 
Nobel Prize in Physics. In Bohr’s words, the wave and particle pictures, or the visual 
and causal representations, are ‘complementary’ to each other. That is, they are 
mutually exclusive, yet jointly essential for a complete description of quantum 
events.

Next year the Nobel Prize was awarded to P. A. M. Dirac and E. Schrödinger. 
The great discovery of the latter, in January 1926, was published in Annalen der 
Physik as ‘Quantisierung als Eigenwertproblem’ [Quantization as an Eigenvalue 
Problem]. It was known as ‘wave mechanics’ and later as Schrödinger’s wave equa-
tion. This paper has been universally celebrated as one of the most important 
achievements of the twentieth century, and created a revolution in quantum mechan-
ics, and indeed of all physics and chemistry. On May that year Schrödinger pub-
lished his third article, in which he showed the equivalence of his approach to that 
of Heisenberg’s matrix formulation.

12.2.6  Kossel, Lewis and Langmuir; Heitler-London-Slater  
and Pauling; and Hund and Mulliken:  
Quantum Chemistry and Bonding Models

During World War I, in 1916, W. Kossel and G. N. Lewis (Lewis 1923) began inde-
pendently to develop electronic models of chemical bonding, a concept fruitfully 
extended shortly thereafter by I. Langmuir. In the new models, the second and third 
periods of the periodic table each have eight members; the last of which (a noble 
gas) has a stable nonbonding ‘octet’ of electrons in a shell. Beyond the octet shells 
are the odd electrons in the outer shell, the ‘valence electrons’, which can be shared 
with adjacent atoms to form chemical bonds.

Langmuir expresses his view that the type of approach used by chemists is sub-
stantially different to that used by physicists:

The problem of the structure of atoms has been attacked mainly by physicists who have 
given little consideration to the chemical properties, which must ultimately be explained by 
a theory of atomic structure. The vast store of knowledge of chemical properties and 
 relationships, such as is summarized in the periodic table, should serve as a better founda-
tion for a theory of atomic structure than the relatively meager experimental data along 
purely physical lines”. (Langmuir 1919, p. 868)

In the late 1920s and early 1930s, W. Heitler, F. London, J. C. Slater and L. 
Pauling developed the ‘valence-bond theory’ as an application of the new quantum 
mechanics of E. Schrödinger and W. Heisenberg. Almost at the same time, R. 
Mulliken developed an alternative theory that began not from the electrons in atoms, 
but from the molecular structure (‘molecular orbital’ bonding). Partly because the 
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extensive and vitally useful role of mathematics in physics had never been trans-
ferred to  chemistry, it took until 1940 for Pauling and Mulliken theories to gain 
wide  acceptance. The Nobel committee delayed 20 and 30 years, respectively, to 
honour this revolution. Pauling became laureate in 1954, and Mulliken won it in 
1966 (Feldman 2001).

P. Atkins has recently presented his latest edition of the book on quantum chem-
istry with De Paula and Friedman (2008) as co-authors, where they review the latest 
improvements in making calculations. For example, they write on ab initio methods, 
configuration interaction and many body perturbation theories that were developed 
with the advent of high-speed computers in the 1950s. They proceed to density 
functional theory and its beginnings with Hohenberg and Kohn (1964) theorems 
and Kohn and Sham (1965) equations. Kohn was awarded the Nobel Prize for 
Chemistry in 1998. They then discuss a method for approximation of exchange 
(proposed by Slater (1951), a simplification that became known as the Xα method) 
and of correlation energies, introduced in the 1960s and 1970s. Their final section 
examines current achievements, including the impact of quantum chemistry  methods 
on nanoscience (the structure of nanoparticles) and medicine (molecular recogni-
tion and drug design).

12.2.7  Molecular and Crystal Symmetry and Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation with  matter. 
In 1860 the German scientists R. Bunsen and G. Kirchhoff discovered two alkali
elements, rubidium and cesium, with the aid of the spectroscope they had invented 
the year before. Since then spectral analysis has been a central tool in chemistry, 
physics and astronomy. But it is not only spherical atoms that interact with light; 
molecules can also do it. Molecules may interact with the oscillating electric and 
magnetic fields of light and absorb the energy carried by them. The more symmetric 
the molecule, the fewer different energy levels it has and the greater the degeneracy 
of those levels. The study of symmetry helps us to simplify problems by reducing 
the number of energy levels one must deal with. But more than that, symmetry helps 
us decide which transitions between energy levels are possible and which are not 
(Harris and Bertolucci 1978) through selection rules, addressing problems that were 
possible to pose and solve via a branch of mathematics named group theory.

The history of group theory and that of quantum mechanics can be of great assis-
tance in understanding the applications of spectroscopy to physical problems. Nobel 
laureate P. W. Anderson (1972, p. 394) wrote ‘it is only slightly overstating the case 
to say that physics is the study of symmetry’. While quantum theory can be traced 
back only as far as 1900, the origin of the theory of groups is much earlier. It was 
given definite form in the later part of the eighteenth and in the nineteenth centuries. 
F. Klein—a German mathematician, known for his work in group theory, function
theory, non-Euclidean geometry and on the connections between geometry and 
group theory—considered the group concept as most characteristic of nineteenth- 
century mathematics.
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The concept of a group is considered to have been introduced by E. Galois
(1811–1832). Galois refashioned the whole of mathematics and founded the field
of group theory only to die in a pointless duel over a woman before his work was 
published when he was 21 years old. J. Liouville published his ideas in 1846. 
Some aspects of group theory had been studied even earlier: in number theory by 
L. Euler, C. F. Gauss and others and in the theory of equations by A. L. Cauchy
and J. L. Lagrange (each with a well-known group theory theorem).

At the heart of relativity theory, quantum mechanics, string theory and much of 
modern cosmology lies one concept: symmetry. In Why Beauty Is Truth, world- 
famous mathematician I. Stewart (2007) narrates the history of this remarkable area 
of study. He presents a timeline of discovery that begins in ancient Babylon and 
travels forward to today’s cutting-edge theoretical physics.

The symmetry aspects are crucial today for the different models of chemical 
structure, bonds, spectroscopic interpretations and chemical reactions. In many of 
these problems the crucial problem is that of the potential seen by electrons moving 
in the electric field of the nuclei. The relation between science and mathematics 
resides in the commutation of the Hamiltonian with the symmetry operators, so that 
the wave functions of the atoms, or molecules, are bases of some of the irreducible 
representations of the point group to which the system belongs. Many books have 
appeared devoted entirely to applications of symmetry and aspects of group theory 
to chemistry. Examples include two classical books (Bishop 1973; Cotton 1963) 
and one modern (Hargittai and Hargittai 2009).

12.2.8  The Problem of Reduction of Chemistry into Physics

One of the most deeply entrenched traditions, which could be seen as an orthodoxy 
that extends beyond the scientific community to the whole of society, is that science 
can be explained in terms of the logical positivist philosophical tradition. Since the 
nineteenth century, logical positivism has sought to clearly establish a boundary 
between science and non-science using two additional criteria:

• An empirical-experimental approach (if something cannot be interpreted in terms 
of observations or measurements, then it is not scientific, it is metaphysical)

• A criterion of logical-mathematical inference and scientific theory (one aspect is 
that if something cannot be rebuilt in a deductive way, it is not rational, it is 
unscientific)

Logical positivism assumes the axiomatisation of theories unifying all sciences 
into one. In its most widely recognised version (Reish 2005), logical positivism, 
presenting science as a linear succession of successful discoveries and placing the 
emphasis on factual recall with confirmatory experiments, contributed to identify 
what kinds of research questions and issues were adequate. This programme of 
unification of science and deriving the principles of one science from another is 
commonly known as reductionism. The logical positivist assumes that the laws of a 
particular science, like chemistry, can in principle be derived from other more basic 
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laws, in this case from physics. This position became stronger particularly with the 
development of relativistic quantum mechanics by P. A. M. Dirac. He indicated:

The underlying laws necessary for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, and the difficulty is only that exact 
applications of these laws lead to quantum mechanical equations which are too complicated 
to be soluble. (Dirac 1929, p. 714)

One of the most important philosophers of science of the time, working from a logi-
cal positivist perspective, H. Reichenbach celebrated Dirac’s claim, indicating that:

The problem of physics and chemistry appears finally to have been resolved: today it is 
possible to say that chemistry is part of physics, just as much as thermodynamics or the 
theory of electricity. (Reichenbach 1978, p. 129)

A few years later, Reichenbach distinguishes between contexts of discovery and jus-
tification, an issue that has occupied a prominent place in the philosophy of science. 
Since then, in its best known version (Reish 2005), logical positivism has presented 
science as a linear succession of successful discoveries and has placed the emphasis on 
factual recall with confirmatory experiments. This contributed to identifying what kinds 
of research questions and issues were adequate for the axiomatic structure of science.

But in the 1960s, several science philosophers started to question the lack of 
historicity of logical positivism, which was based mainly in the context of justifica-
tion (Reichenbach 1938). They proposed alternative ways of conceiving the phi-
losophy of science based on historical ideas such as change, progress or revolution 
(Kuhn 1969; Toulmin 1961, 1972). More recently several philosophers have also 
questioned other traditional assumptions of logical positivism such as reductionism 
and verificationism (Hacking 1983; Harré 2004; Laudan 1997; Popper 1969). This 
indicates that the philosophy of science has escaped the constraints imposed by the 
context of justification without losing sight of the question of rationality. New and 
different ways of approaching the philosophy of science have emerged, for exam-
ple, M. Christie and J. Christie (2000) make a case for the diverse character of laws 
and theories in the sciences and particularly consider a pluralistic approach to laws 
and theories in chemistry. R. Giere (1999) considers that science does not need laws 
because ‘science does not deliver to us a universal a truth underlying all natural 
phenomena; but it does provide models of reality possessing various degrees of 
scope and accuracy’ (Giere 1999, p. 6).

These new and different approaches to the philosophy of science lead to 
reconsideration of what Dirac said. Thus the Nobel Prize winner in Chemistry, 
for his theory concerning the course of chemical reactions using quantum 
mechanics, R. Hoffmann indicated (1998, p. 4):

Only the wild dreams of theoreticians of the Dirac school make nature simple.

This idea was shared by the 1969’s Physics Nobel Prize for his contribution and 
discoveries on the classification of elementary particles (quarks) and their interac-
tions, M. Gell-Mann. He said (1994):

When Dirac remarked that his formula explained most of physics and the whole of chem-
istry of course he was exaggerating. In principle, a theoretical physicist using quantum 
electrodynamics can calculate the behaviour of any chemical system in which the detailed 
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internal structure of atomic nuclei is not important. [But:] in order to derive chemical 
properties from fundamental physical theory, it is necessary, so to speak, to ask chemical 
questions. (Gell-Mann 1994, p. 109)

And some of those chemical questions, perhaps the simplest, are related to the 
periodic table. Much has been written about them (Jensen 2002; Scerri 2007), but it 
is relevant to recall what philosopher of chemistry J. van Brakel (2000) says:

As a specific example of the reduction of chemistry to physics, it is often suggested that 
the periodic table can be ‘derived’ from quantum mechanics. Such a reduction was 
already ascribed to Bohr, for example, by Popper. But, contrary to his own claims (and 
those of Popper) ‘Bohr populated the electron shells while trying to maintain agreement 
with the known experimental facts’. Later developments too in quantum mechanics 
 cannot strictly predict where chemical properties recur in the periodic table. Pauli’s 
explanation for the closing of electron shells does not explain why the periods end where 
they do: the closing of shells is not the same as the closing of periods in the table. 
Unknown electronic configurations of atoms are not derived from quantum mechanics, 
but obtained from spectral observations. Hund’s rule states an empirical finding and cannot 
be derived. (van Brakel 2000, p. 119)

A current periodic table shows many and various properties attached to atoms, 
including, for example, the size. However, the various theoretical approaches 
derived from quantum mechanics to calculate atomic size assume, arbitrarily, that 
atoms are bounded. There is no such thing as an absolute atomic size. An atom is 
not a rigid sphere, so ‘atoms differ in size depending on the type of external forces 
acting on them’ (Cruz et al. 1986, p. 704). The various experimental techniques 
used to determine internuclear distances indicate that the size of atoms depends on 
the surrounding environment. Therefore, a periodic table can only show covalent, 
ionic or metallic radii as typical outcomes from experimental measurements of 
many different solids.

As several researchers have discussed when addressing entanglement (Primas 
1983), arising from strict quantum mechanical treatments, physical systems are 
never isolated nor closed. As with the size of atoms, so the geometry of molecules 
varies depending on their environment. Van Brakel indicated:

According to Primas the crucial issue is not the approximations of quantum chemistry as the 
Born-Oppenheimer description, but the breaking of the holistic symmetry of quantum 
mechanics by abstracting from the Einstein-Podolsky-Rosen (EPR) correlations. It is the EPR 
correlations that exclude any classical concept of object, shapes or the fixed spatial structures 
such as presupposed in the notion of molecular structure … therefore, quantum chemistry 
borrows the notion of molecular structure from classical chemistry. (van Brakel 2000, p. 144)

R. G. Woolley (1978) defends this position in his famous and provocative article 
‘Must a molecule have a shape?’ which indicates that the classic concept of mole-
cule cannot be derived from quantum mechanics. Nevertheless, since the nineteenth 
century, chemists have determined experimentally the particular geometries of vari-
ous molecules. Today we know that these geometries are relative to the timescale of 
measurement.

Thus, there are difficulties in interpreting even the simplest chemical phenom-
ena, rigorously and independently, from quantum mechanics. The problems are 
almost intractable as can be recognised in Table 12.3 (Jensen 1980).
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For similar reasons there are many chemical notions that are not amenable to 
rigorous quantum mechanical treatment. Van Brakel (2000) mentions some of them: 
acidity, aromaticity, basicity, chemical bond, chemical reaction, chirality, electronic 
configuration, orbital, electronegativity, functional group, molecular structure, reso-
nance, relative energy of s and p orbitals and valence.

In a similar way another philosopher of chemistry J. Schummer (1998) recog-
nises the differences among the various sciences when dealing with the study of 
material properties (which from a reductive view are those of the atomic and 
 molecular structure):

For sciences of materials, with chemistry at the centre, have been, from the earliest stages 
on, experimental science in the original meaning of studying the behaviour of objects in 
various and controlled artificial contexts. A material property is reproducible behaviour 
within certain reproducible contextual conditions. It is important to note that material prop-
erties are attributed not to isolated objects but to objects and contexts. Since everything 
looks red under red light, we have to specify the colour both of the object under investiga-
tion and of the light, in order to make qualified colour statements. Since everything is solid 
at a certain temperature and pressure, solidness always implies specification of thermody-
namic conditions. Sometimes it is more the context that matters. To speak of a toxic sub-
stance does not mean that the substance itself but the context, a biological organism, falls 
sick or dies, if it gets in contact with the substance. Precise material predicates require 
precise and systematic details of the contexts of investigation, making contexts themselves 
a central subject matter of sciences of materials.

This poses a difficult problem in the teaching of atomic and molecular structure, 
when it ignores its historical roots and philosophical consequences, an issue that has 
not escaped the experts. In 1999 Nature published a report that orbitals had been 
observed (Zuo et al. 1999). There were philosophical objections (Scerri 2000a, 2001), 

Table 12.3 Outline of steps which, according to our present knowledge of quantum mechanics 
and statistical thermodynamics, are necessary in order to predict rigorously the equilibrium or rate 
constant of a reaction in solution from first principles

1.  Calculation of the electronic potential energy of the static arrangement of atoms corresponding 
to the structures of each reactant and product

2.  Prediction of the normal modes of motion for the atoms in each structure. This amounts to 
setting up a mathematical description of the structure’s vibrational and rotational motions

3.  For many of these motions, the lowest kinetic energy is not zero, but rather a half-quantum of 
the motion. This zero-point kinetic energy must be added to the potential energy

4.  From the knowledge of the normal modes of motion, it is possible to compute the partition 
function of each species as a function of temperature and from this is obtained the standard 
free energy and enthalpy of each species in the dilute gas state and at the temperature of 
interest

5.  The standard free energy and enthalpy of each species in solution is then computed considering 
the transfer from the gas phase to solution

6.  Values of ΔH0 ΔG0 and ΔG* and ΔH* are calculated for the maximum point on the surface of
least energy connecting the reagents with the products. With these values it is possible to 
calculate the equilibrium constant and reaction rate

7.  Finally the calculated values must be recalculated to consider the actual concentration of the 
various species in solution using the activity coefficient of each species for the temperature 
and solvent under consideration
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which indicated a confusion of the authors of this article aforementioned between 
observable and unobservable (Shahbazian and Zahedi 2006) and between the real 
world and models (Pagliaro 2010). The following quotes from some of the partici-
pants in this discussion help to clarify their positions, particularly in relation to the 
teaching of this topic:

… chemists have a tendency to “decompose” molecules arbitrarily into basic conceptual or 
pseudo-physical components (such as orbitals and atoms), which can cause controversy. 
The entities, which come from such decompositions, make a new class of mathematical 
objects: “non-observables”. Using these non-observables as a tool for chemical arguments 
is a common practice of chemists. (Shahbazian and Zahedi 2006, p. 39)

Orbitals however are also a (quantum) chemical model of immense importance in chemis-
try. Their relationship to the chemical methodology is heuristic, i.e., their usefulness in 
many branches of science justifies the use of the model. (Pagliaro 2010, p. 279)

Yes, it is important to know when approximations are made, but success in a science like 
chemistry is largely a matter of finding useful approximations: this is what students should 
be taught. (Spence et al. 2001, p. 877)

Chemical educators should continue to use concepts like orbitals and configurations but 
only while recognizing and emphasizing that these concepts are not directly connected with 
orbitals as understood in modern quantum mechanics, but are in fact a relic of the view of 
orbits in the so-called old quantum theory. (Scerri 2000b, p. 412)

Finally, it is important to recognise that traditionally two types of reductionism 
have been considered: ontological and epistemological (Silberstein 2002). Despite 
the intense debates that have occurred in this area, where important issues are 
those related to ‘the kind of relations’, or ‘the way in establishing relationships’ 
(Lombardi and Labarca 2005), recent years have witnessed a growing consensus 
towards a tradition that denies the possibility of reducing chemistry to physics. 
In particular there is a denial that such a reduction has been achieved via quantum 
mechanics as considered from logical positivism. Bibliography related to this 
subject can be found in Erduran (2005), Schummer (2008), Snooks (2006), and 
Velmulapalli and Byerly (1999).

12.3  Procedures

12.3.1  Introduction

This section addresses three issues. The first has to do with the way that history and 
philosophy of sciences are incorporated into the teaching of atomic and molecular 
structure. The second considers the diversity of previous ideas that students from 
different educational levels bring to the subject and how these ideas hinder their 
learning. Finally, the third part outlines several reported experiences in teaching 
atomic and molecular structure. About all this M. Niaz has dedicated a book (Niaz 
2009) and a full set of papers (e.g. Niaz 2000 and 2010) dedicated to posing the 
necessity of the historical teaching with episodes and experiments that have been 
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important in science progress. He emphasises the validity of the following phrase of 
Kant and Lakatos: ‘philosophy of science without history of science is empty’.

12.3.2  Philosophy and History in Teaching and Their 
Importance

In present science education, history and philosophy play a fundamental role 
(Duschl 1994; Matthews 1994/2014; Wandersee and Griffard 2002). But the teach-
ing of history cannot be only the chronological narrative of past events; it requires, 
as indicated by Husbands (2003), ‘… that we, history teachers … establish a more 
subtle, less absolutist understanding of the way in which knowledge is created … It 
needs to be developed through the process of inquiry in the classroom, by teachers 
and learners in classrooms working to create meanings’. In a similar way Tsaparlis 
(1997b, p. 924) has emphasised the historical method of teaching as a way of better 
understanding the topic of atomic and molecular structure.

Moreover, as indicated in the previous discussion of reduction, an issue such as 
this requires in its teaching, the recognition of the different philosophical positions 
that underlie its foundation (Karakostas and Hadzidaki 2005). About realism, and the 
reality of electrons, the influential philosopher I. Hacking has said (1983, p. 22): ‘If you 
can spray them, then they are real …’. Others, like Achinstein (2001), in discussing the 
discovery of the electron, put forward the following components for a discovery:

• Ontological—Discovering something requires the existence of what is discovered.
• Epistemic—A certain state of knowledge of the discoverer is required.
• Priority—Social recognition of the discovery.

In the same book Arabatzis (2001) offers a consensus-based account of discov-
ery, asserting that entity x (atom, electron, spin and phlogiston) can be said to have 
been discovered just when a group y reaches consensus that it has been. He simply 
wishes to concentrate on synchronous belief, not on reality. However, in another 
chapter of the same book, Morrison addressed the reality of spin (2001). These 
discussions can be very technical and complicated. Nevertheless it is advisable for 
a teacher to adopt a position or at least to know it.

In recent years, for example, several authors have recognised that the way chem-
istry is usually taught is based on a particular philosophical position and that in 
general terms this position is logical positivism (Chamizo 2001; Erduran and Scerri 
2002; Van Aalsvoort 2004; Van Berkel et al. 2000). Van Berkel with researchers all 
around the world analysed current and post-war textbooks and syllabi representative 
of secondary chemistry education in most Western countries trying to find why they 
are so remarkably similar. He recognises that dominant school chemistry is particu-
larly isolated from everyday life and society, history and philosophy of science, 
technology and chemical research. His main conclusion was:

The structure of the currently dominant school Chemistry curriculum is accurately described 
as a rigid combination of a substantive structure, based on corpuscular theory, a specific 
philosophical structure, educational positivism, and a specific pedagogical structure, 
 initiatory and preparatory training of future chemists. (van Berkel 2005, p. 67)
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During the Cold War, a philosophy of science, which defended science’s superior 
analytical purity, was enthroned in most of the Anglo-Saxon intellectual world 
(Echeverria 2003). It focused on science methodology and the reduction of various 
scientific disciplines to physics. Since then, the best known version of logical posi-
tivism, presenting science as a linear succession of successful discoveries and plac-
ing the emphasis on factual recall with confirmatory experiments, has contributed to 
identifying what kinds of research questions and issues were adequate not only for 
axiomatic science (Reish 2005) but also for school syllabus, as can be seen in chem-
istry and physics curricula. Therefore it would be desirable, regardless of the educa-
tional level, when addressing the teaching of atomic and molecular structure, to 
identify the philosophical position underlying the approach.

Journals oriented to chemistry education are dedicating full sections to the 
 history of chemistry. William B. Jensen, since 2003 until recently, had the responsi-
bility of writing a section ‘Ask the historian’ in the Journal of Chemical Education. 
He previously had devised a framework of three chemical revolutions from which 
he extended three levels of comprehension of chemistry—Molar, Molecular and 
Electrical—and three dimensions, based on whether they deal with composition/
structure, energy or time (Jensen 1998). In that set of articles, Jensen commented 
that there are a large number of histories of chemistry. In his bibliographic study, 
Jost Weyer (1974) listed no fewer than 71 general histories of chemistry written 
between 1561 and 1970, of which 29, or roughly 40 %, have appeared written in 
English. George B. Kauffman has the responsibility of writing historical articles for
the journal The Chemical Educator, mainly to commemorate anniversaries of out-
standing achievements in chemistry (some examples are Kauffman 1999, 2004, 
2006, 2010). Jaime Wisniak has played a similar role in Educación Química, the 
Ibero-American Journal of Chemistry Education, since 2001 (Wisniak 2013).

However, although there are many scholarly works on the history of chemistry, 
there have been few on how to incorporate them, effectively and systematically, into 
the teaching of chemistry. Perspectives, such as that established by Jensen (1998), 
in which the curriculum is built on history (in this case of atoms and molecules), 
or that described by Early (2004) from a new philosophical basis, are few and 
therefore very important. As Talanquer recognised (2011) school chemistry needs 
transgression.

12.3.3  Introduction to Alternative Conceptions and Difficulties  
in Teaching and Learning Quantum Mechanics  
and Quantum Chemistry

Many studies have reported students’ difficulties in grasping the fundamental issues 
of quantum mechanics and quantum chemistry in high school. We shall mention 
first an article by Tsaparlis and Papaphotis (2002) where findings of student difficul-
ties with quantum numbers, atomic and molecular orbitals, are reviewed, and a case 
is presented against using quantum chemical concepts at this level (Bent 1984). 
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These authors insist that the topic is highly abstract and therefore beyond the reach 
of many students.

Students have difficulty understanding the concepts of atomic and molecular 
structure (Harrison and Treagust 1996) because of the abstract nature of the sub- 
micro world (Bucat and Mocerino 2009). Many authors have been discussing in 
several studies the difficulties or misconceptions in students’ learning about matter—
those related to its particulate nature,3 to bonding in general,4 to the covalent bond-
ing model,5 to the metallic bonding model6 and to the ionic bonding model.7

Other studies have reported students’ difficulties in grasping the fundamental 
issues of quantum mechanics and quantum chemistry at high school8 and college 
levels.9 In particular the following concepts are indicated:

• ‘Probability and energy quantization’ (Park and Light 2009)
• ‘Quantum numbers’ or ‘electron configurations of chemical elements’10

• ‘Orbital ideas’11

• ‘Uncertainty and complementarity’ (Pospiech 2000)
• ‘The Schrödinger equation’ (Tsaparlis 2001)

From the point of view of teaching, the elementary, qualitative and pictorial cov-
erage of quantum chemical concepts is approached with reservation or with strong 
opposition by many chemical educators (Bent 1984; Gillespie 1991; Hawkes 1992).

Physicists have also recognised the difficulties involved in understanding quan-
tum mechanics (Einstein 1926, 1944, 1948; Feynman 1985; Laloë 2001; Styer 2000).

Taber (2003) mentions ‘most alternative conceptions in chemistry do not derive 
from the learner’s unschooled experience of the world’. The many problems that 
learners have in chemistry maybe best characterised as ‘model confusion’ (see 
 Sect. 12.3.4.4). Where there are several models for particular or closely related 
chemistry concepts, students become greatly confused. This is particularly so  
when most learners have a very limited notion of the role of models in science 
(Grosslight et al. 1991).

3 See, for example, Lee et al. (1993), Novick and Nussbaum (1978, 1981), Nussbaum (1985), 
Valanides (2000), and Wightman et al. (1987).
4 As can be seen in Birk and Kurtz (1999), Boo (1998), Furió and Calatayud (1996), Griffiths and Preston
(1992), Hund (1977), Kutzelnigg (1984), Magnasco (2004), Özmen (2004), and Sutcliffe (1996).
5 For example, Coll and Treagust (2002), Niaz (2001), and Peterson et al. (1989).
6 Such as in Coll and Treagust (2003a) and De Posada (1997, 1999).
7 See, for example, Butts and Smith (1987), Coll and Treagust (2003b), and Taber (1994, 1997).
8 Such as Dobson et al. (2000), Petri and Niedderer (1998), Shiland (1995, 1997), and Tsaparlis and 
Papaphotis (2002, 2009).
9 For example, Hadzidaki et al. (2000), Johnston et al. (1998), Kalkanis et al. (2003), Michelini et al. 
(2000), Paoloni (1982), and Wittmann et al. (2002).
10 As can be seen in Ardac (2002), Melrose and Scerri (1996), Niaz and Fernández (2008), and 
Scerri (1991).
11 For example, Cervellati and Perugini (1981), Conceicao and Koscinski (2003), Ogilvie (1994), 
Scerri (2000a), Taber (2002a, b; 2005), and Tsaparlis (1997a).
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12.3.4  Experiences

12.3.4.1  Similarities

This subject is closely related to the previous subsection. One of the first to establish 
similarities between the historical development of science and the conceptual devel-
opment of students was J. Piaget (Piaget and Garcia 1983) followed by Gagliardi
(1988), although Matthews (1992) identifies this idea in Hegel’s The Phenomenology 
of Mind. There are strong grounds for criticism of this position (Gault 1991), mainly 
because the equivalence between the ideas of scientists and students has not been 
demonstrated. Nevertheless, Scheffel and colleagues (2009) recently and carefully 
used the similarities in classroom teaching through the following sequence:

 1. The teacher hands on historical, but educational purposes reduced, material to 
the student. This will presumably pick up students’ misconceptions and their 
actual scientific positions.

 2. The students discuss these ideas and propose experiments to verify or falsify one 
of the theories or models that has been presented. They have an opportunity to 
choose one of the scientists as an advocate for their preconceptions.

 3. Based on experiments and if necessary on additional material, the pros and cons 
of each theory or model are collected and discussed. If possible, a decision 
should be formulated and explained.

These authors provide examples of similarities, applying this teaching methodology 
to old atomism, chemical bonding or Lewis octet model.

12.3.4.2  The Historical Narrative

Narrative can be defined as ‘telling someone else that something happened’ 
(Herrestein-Smith 1981, p. 228). Norris and colleagues (2005) elaborated this 
approach, and they identified in the narrative the roles of the narrator, the reader and 
the events. Particularly important here is the responsibility of the narrator—in this 
situation, the teacher—because he or she must facilitate the interpretation of the 
events in context (Gilbert 2006). As Metz and colleagues (2007) recognised, the 
narrative approach has a spectrum of possible applications:

• Interactive vignettes (Wandersee and Griffard 2002)
• Anecdotes (Shrigley and Koballa 1989)
• Curriculum unit unified by a theme (Holbrow et al. 1995)
• Storyline, when the thematic approach will begin with a big question (Stinner 

and Williams 1998)

For example, Teichmann (2008) included anecdotes from some atomic structure 
protagonists; Klassen (2007) has used narratives for teaching the heroic attitude of 
L. Slotin assembling the first atomic bomb and for rehabilitating the story of the 
Photoelectric Effect (2008). In similar fashion, Nobel lectures have also been used 
for teaching in chemistry and in physics (Jensen et al. 2003; Panusch et al. 2008; 
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Stinner 2008). Biographies, tributes and interviews could also be considered in this 
category. Some examples are G. N. Lewis (Branch 1984), L. Pauling (Kauffman and 
Kauffman 1996) and R. S. Mulliken (Nachtrieb 1975).

12.3.4.3  The Historical Role of Rivalry, Controversy, Contradiction,  
Speculation and Dispute in Scientific Progress  
and Its Use in Teaching Strategies

In academia, conflicts in and around science have been studied for various reasons:

• To gain insight into the process of science policy making process
• To learn more about the various roles of scientists
• To identify the ways in which the public might participate in decision making
• To understand how controversies arise, how they are contained within the scien-

tific community or expand into the public domain, how they are brought to a 
close or why they persist, among others

• To analyse the social construction and negotiation of scientific knowledge claims 
by conflicted scientists (Martin and Richards 1995)

Nevertheless, dispute in scientific progress has been rarely used in the teaching 
and learning of science (Niaz 2009).

Teaching through the consideration of historical aspects of scientific knowledge 
has the potential to show the progress of scientific knowledge over time. Historical 
artefacts and scientific discoveries, scientists’ life stories and the details of scientific 
struggles in scientific progress could be discussed in the science classroom. Because 
the knowledge represented in textbooks or in any predesigned science-learning envi-
ronment context is the end product of science, students and teachers do not learn and 
teach about those presuppositions, contradictions, controversies and speculations 
existent in scientific progress (Niaz 2009, 2010; Garritz 2012 online). Only a few 
teachers today believe and teach that scientific knowledge is tentative, empirically 
based, subjective and parsimonious; that it includes human creativity and imagina-
tion; and that it is socially and culturally constructed (Ayar and Yalvak 2010).

12.3.4.4  The Explicit Recognition of Models and Modelling

The Model-Based view of Scientific Theories and the structuring of school science 
(Adúriz-Bravo 2012; Develaki 2007) have recently been discussed elsewhere. As 
discussed earlier in this chapter, quantum mechanics forced physicists and chemists 
to reshape their ideas of reality, to rethink the nature of things at the deepest level 
and to revise their concepts of determinacy vs. indeterminacy, as well as their 
notions of cause and effect. Here we adopt a realist position about molecules, atoms 
and electrons. In agreement with Tapio (2007), we specify that:

• Reality and its entities are ontologically independent of observers.
• Claims about the existence of entities have truth-value.
• Models of atoms and molecules are required to be empirically reliable.
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Model is a polysemous word; it has been used and it is still used with several 
meanings. That is one of the difficulties we meet when we use it in teaching. In one 
usage, ‘model’ is exemplary; it indicates things, attitudes or people worthy of emu-
lation. The courage of a warrior, the intelligence of a wise man, the solidarity of a 
doctor and the speed of a runner are examples of ‘models’ in this regard. In this 
paper we use a previous definition of ‘model’ (see Chamizo 2011 for all the refer-
ences): ‘models (m) are representations, usually based on analogies, which are built 
contextualizing certain portion of the world (M), with a specific goal’. In this defini-
tion all the words are important: the representations are essentially ideas, but not 
necessarily so, as they can also be material objects, phenomena or systems (all of 
them constitute a certain part of the world M). Representations have no meaning by 
themselves; they come from someone (either an individual or a group, usually the 
latter) that identifies them as such. An analogy is made up of those features or 
 properties that we know are similar in (m) and (M). That ‘are built contextualizing 
certain portion of the world M’ refers to a historically defined time and place which 
also frames the representation. Some ‘portion of the world’ indicates its limited 
nature; models (m) are partial for the world (M). ‘A specific goal’ establishes its 
own purpose, usually (but not necessarily) to explain or teach and possibly also to 
predict. In this sense models can be understood as cognitive artefacts or mediators 
constructed in order to create subjective plausibility about the target. It is important 
to remember that explanation is one of the most significant features of science, but 
in some cases when models are even completely unable to offer an explanation, 
much of the prestige of a model may lie in its capacity to predict.

There are only two types of models: mental and material.
Mental models are reflected representations built by us to account for (explain, pre-

dict) a situation. They are forerunners of the famous ‘misconceptions’ (see Sect. 12.3.3) 
and can sometimes be equivalent, since they are unstable, generated in the moment and 
then discarded when no longer needed, making them cognitively disposable.

Material models (which may be identified as prototypes) are the ones that we 
have empirical access to and have been built to communicate with other individuals. 
Material models are expressed mental models and can be further categorised as 
symbolic, iconic or experimental. Here we only discuss the first two. Symbolic 
material models correspond to the languages of sciences, such as mathematics or 
chemistry. So mathematical equations constructed to describe precisely the portion 
of the world being modelled are symbolic material models. Wave mechanics is a 
symbolic material model. Another example of symbolic material model is the one 
used by chemists to represent elements, compounds and reactions. Hence, when a 
teacher writes the molecular structure of water as H2O using two hydrogen and one 
oxygen atom, the teacher uses a symbolic material model. Iconic material models 
correspond to images, diagrams or scale models, like a map or the so-called molecu-
lar models. Stereochemistry was constructed with iconic material models in three 
dimensions. For example, in the early years of the nineteenth century, Dalton con-
structed wooden models of atoms; after him Pasteur made his models of enantiomer 
tartrate crystals, Hofmann his croquet ball molecular models and van’t Hoff his 
cardboard tetrahedral models. In the twentieth century the stereochemical ideas 
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of Pauling led to the most famous example of an iconic material model, the DNA 
structure by Watson and Crick.

Recently Seok and Jin (2011) have reviewed the literature dealing with models 
and modelling and reported some important findings. Two of them related to model 
use in atomic and molecular structure teaching are:

• Meaning of a model. A model is understood as a representation of a target. The 
targets represented by models can be various entities, including objects, phenom-
ena, processes, ideas and their systems. A model is also considered a bridge or 
mediator connecting a theory and a phenomenon, for it helps in developing a the-
ory from data and mapping a theory onto the natural world, for example, atomic 
models (Dalton, Bohr, Lewis), molecular models or bonding models (ionic, cova-
lent, coordinated and metallic) or electron models (corpuscle or wave like).

• Change in scientific models. There are two ways of testing a model in science: 
the empirical and conceptual assessments. An empirical assessment is a way of 
evaluating a model in terms of the fit between the model and the actual phenom-
enon. In a conceptual assessment, a model is evaluated according to how well it 
fits with other accepted models as well as with other types of knowledge.

The assessment of a model is conducted differently in experimental sciences, such 
as physics or chemistry, from in historical sciences, or others, such as earth science. For 
example, Bohr’s atomic model is excellent at explaining hydrogen spectra, but useless 
for molecular structures; Lewis’ atomic model is excellent in predicting simple organic 
structures, but useless in, for example, infrared spectra (about Lewis model in introduc-
tory teaching of atomic and molecular structure see Chamizo 2007; Purser 2001).

Finally because models are built in a particular historical moment for specific 
purposes, the context should be explicitly recognised when teaching them. Justi and 
Gilbert (2000) have warned us about the frequent use of hybrid models in the text-
books, which has produced so much confusion among students. Experiences of more 
correct use of these models have been reported recently (Chamizo 2007, 2011, 2012).

12.3.4.5  Textbooks, Experiments and Information  
and Communication Technologies (ICTs)

There are several books that feature various aspects of the history of atoms and molec-
ular structure.12 One of the most influential is Kuhn’s Black-Body Theory and the 
Quantum Discontinuity 1894–1912. Another example is the history of quantum 
chemistry as told by E. Segrè (2007) in which a Nobel laureate offers impressions 
and recollections of the development of modern physics. Rather than a chronological 
approach, Segrè emphasises interesting, complex personalities who often appear only 
in footnotes. Readers will find that this book adds considerably to their understanding 
of science and includes compelling topics of current interest.

12 For example, Buchwald and Warwick (2001), Giunta (2010), Marinacci (1995), Nye (1993), 
Snow (1981), and Toulmin and Goodfield (1962).
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However, very few of these last writers teach undergraduate chemistry. The 
authors of this chapter have written a book in Spanish on quantum chemistry, with 
emphasis on the development of the historical aspects of this science (Cruz et al. 
1986). With hundreds of solved exercises and problems, it has been used widely in 
Ibero-America. The historical narrative oscillates in time, from the nineteenth- 
century chemistry until the interpretation of periodicity, as can be seen in Table 12.4.

Experiments related to the history of atomic and molecular structure are rare. 
Some of them can be found in more general books like Doyle’s Historical Science 
Experiments on File (Doyle 1993). However, there are some examples, ranging 
from the electrochemical decomposition of water (Eggen et al. 2012) to spin through 
the Stern-Gerlach experiment (Didis and SakirErkoc 2009).

Information and Communication Technologies (ICTs) have so far had little 
impact in this area, with the exception of graphs of orbitals, electron densities and 
contours. The PhET project (Physics Education Technology) has branched also into 
chemistry and biology. Some of the designed computer simulations have been 
devoted to atomic and molecular structure from historical experiments. PhET con-
ducts research on both the design and use of interactive simulations, but important 
as this material is, the failure to address historical context and provide historical 
references has made this approach so far quite weak.

12.4  Conclusion

Physical chemistry remains a fundamental basis for the teaching of chemistry. 
Mathematics, as group theory and matrix representations, is needed to understand 
selection rules via symmetry studies and, through them, spectroscopic transitions, an 
important topic since the second half of last century. Nevertheless there is a necessity 
for balance between the theoretical physicochemical basis of chemistry and the phe-
nomenological and empiricist knowledge that chemistry had already produced.

The parsimonious advice of one of the reviewers of this chapter was ‘do not 
introduce needless complexity unless it is warranted to explain the necessary facts’. 
This can be also a conclusion about the inclusion of history and philosophy of 
science in teaching quantum mechanics and quantum chemistry. One has to apply 
Ockham’s Razor rules while teaching these topics.

We can recognise in the almost 200 works cited in this study that integration of 
history of science into the teaching of atomic and molecular structure has been seen 
as an important step, particularly since 1994. Increasing numbers and diversity of 
resources and studies of strategies to be used are making this incorporation more 
robust. Nevertheless, the way in which chemistry has been taught all around the 
world is based on a particular philosophical position, which comes from its accep-
tance as a reduced science, and can be characterised as logical positivism. This 
normal (in Kuhn’s terminology) education practice has not been driven to any great 
extent by educational, historical or philosophical research findings. A few years 
ago J. Moore, as editor of the influential Journal of Chemical Education (2005), 
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indicated the poor impact of chemical education research on teaching and learning, 
in spite of the motto of the National Association of Research in Science Teaching: 
‘Improving Science Teaching and Learning Through Research’.

There still has not been major change regarding what the teaching of sciences 
requires. In general, the majority of teachers, textbooks and science curricula still 
consider science teaching as a dogma or as ‘rhetoric of conclusions’ (Schwab 1962). 
This situation can only change if teachers know and recognise the uniqueness of 
chemistry and the philosophical positions from which they approach their practice. 
Realism and models are some of the issues involved. Some ideas from the historian 
of chemistry M. J. Nye could be very helpful:

We can say that if mechanics has always been an aim of scientific philosophy, the twentieth- 
century chemistry has revived its philosophical character, achieving a long-sought under-
standing of the dynamics of matter. But chemists more that physicists, have remained 
self-conscious about the fit between the phenomena taking place in the laboratory and the 
symbols employed in the operations of explanatory mathematics. Precision, not rigor, has 
been characteristic of chemical methodology. Parallel representations, not single causal 
principle, have been characteristic of chemical explanation.

Whereas many early-twentieth-century physicists were inclined to regard convention-
alism, complementarity, and indeterminacy as concessions of failure in their traditional 
philosophical enterprise, chemists were not surprised that a simple, “logical” account of the 
behaviour of electrons and atoms, like that of molecules and people, often gives way to the 
inconsistencies and uncertainties of empiricism. (Nye 1993, p. 282)
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